Again let’s jump into c# syntax basically and let me show you what you need to know in the beginning.

Operands -> variable names, object/server control names, literals – “Nouns”(you name these)

Operators – > “Verbs”… they act on operands

A detailed explanation could be found in the following taken from microsoft.com

In C#, an *operator* is a program element that is applied to one or more *operands* in an expression or statement. Operators that take one operand, such as the increment operator (`++`

) or `new`

, are referred to as *unary* operators. Operators that take two operands, such as arithmetic operators (`+`

,`-`

,`*`

,`/`

), are referred to as *binary* operators. One operator, the conditional operator (`?:`

), takes three operands and is the sole ternary operator in C#.

The following C# statement contains a single unary operator and a single operand. The increment operator, `++`

, modifies the value of the operand `y`

.

y++;

The following C# statement contains two binary operators, each with two operands. The assignment operator, `=`

, has the integer variable `y`

and the expression `2 + 3`

as operands. The expression `2 + 3`

itself consists of the addition operator and two operands, `2`

and `3`

.

y = 2 + 3;

## Operators, Evaluation, and Operator Precedence

An operand can be a valid expression that is composed of any length of code, and it can comprise any number of sub expressions. In an expression that contains multiple operators, the order in which the operators are applied is determined by *operator precedence*, *associativity*, and parentheses.

Each operator has a defined precedence. In an expression that contains multiple operators that have different precedence levels, the precedence of the operators determines the order in which the operators are evaluated. For example, the following statement assigns 3 to `n1`

.

n1 = 11 - 2 * 4;

The multiplication is executed first because multiplication takes precedence over subtraction.

The following table separates the operators into categories based on the type of operation they perform. The categories are listed in order of precedence.

**Primary Operators**

Expression | Description |
---|---|

x.y
x?.y |
Member access
Conditional member access |

f(x) | Method and delegate invocation |

a[x]
a?[x] |
Array and indexer access
Conditional array and indexer access |

x++ | Post-increment |

x— | Post-decrement |

new T(…) | Object and delegate creation |

`new` T(…){…} |
Object creation with initializer. See Object and Collection Initializers. |

`new` {…} |
Anonymous object initializer. See Anonymous Types. |

`new` T[…] |
Array creation. See Arrays. |

typeof(T) | Obtain System.Type object for T |

checked(x) | Evaluate expression in checked context |

unchecked(x) | Evaluate expression in unchecked context |

default (T) | Obtain default value of type T |

delegate {} | Anonymous function (anonymous method) |

**Unary Operators**

Expression | Description |
---|---|

+x | Identity |

–x | Negation |

!x | Logical negation |

~x | Bitwise negation |

++x | Pre-increment |

—x | Pre-decrement |

(T)x | Explicitly convert x to type T |

**Multiplicative Operators**

**Additive Operators**

Expression | Description |
---|---|

x + y | Addition, string concatenation, delegate combination |

x – y | Subtraction, delegate removal |

**Shift Operators**

**Relational and Type Operators**

Expression | Description |
---|---|

x < y | Less than |

x > y | Greater than |

x <= y | Less than or equal |

x >= y | Greater than or equal |

x is T | Return true if x is a T, false otherwise |

x as T | Return x typed as T, or null if x is not a T |

**Equality Operators**

**Logical, Conditional, and Null Operators**

Category | Expression | Description |
---|---|---|

Logical AND | x & y | Integer bitwise AND, Boolean logical AND |

Logical XOR | x ^ y | Integer bitwise XOR, boolean logical XOR |

Logical OR | x | y | Integer bitwise OR, boolean logical OR |

Conditional AND | x && y | Evaluates y only if x is true |

Conditional OR | x || y | Evaluates y only if x is false |

Null coalescing | x ?? y | Evaluates to y if x is null, to x otherwise |

Conditional | x ? y : z | Evaluates to y if x is true, z if x is false |

**Assignment and Anonymous Operators**